On a Generalization of Test Ideals

نویسنده

  • NOBUO HARA
چکیده

The test ideal τ(R) of a ring R of prime characteristic is an important object in the theory of tight closure. In this paper, we study a generalization of the test ideal, which is the ideal τ(a) associated to a given ideal a with rational exponent t ≥ 0. We first prove a key lemma of this paper (Lemma 2.1), which gives a characterization of the ideal τ(a). As applications of this key lemma, we generalize the preceding results on the behavior of the test ideal τ(R). Moreover, we prove an analog of so-called Skoda’s theorem, which is formulated algebraically via adjoint ideals by Lipman in his proof of the “modified Briançon–Skoda theorem.”

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generalization of Interval Valued $left( in ,in vee q_{widetilde{k}}right) $-Fuzzy bi-Ideals in Ordered Semigroups

In this paper, we introduce a new sort of interval valued $left(in ,in vee q_{widetilde{k}}^{widetilde{delta }}right) $-fuzzy bi-ideal in ordered semigroups which is the generalization of interval valued $left( in ,in vee q_{%widetilde{k}}right) $-fuzzy bi-ideal and interval valued $left( in ,in vee qright) $-fuzzy bi-ideal of ordered semigroups. We give examples in which we show that these str...

متن کامل

z-weak ideals and prime weak ideals

In this paper, we study a generalization of z-ideals in the ring C(X) of continuous real valued functions on a completely regular Hausdorff space X. The notion of a weak ideal and naturally a weak z-ideal and a prime weak ideal are introduced and it turns out that they behave such as z-ideals in C(X).

متن کامل

Graded Prime Ideals Attached to a Group Graded Module

Let $G$ be a finitely generated abelian group and $M$ be a $G$-graded $A$-module. In general, $G$-associated prime ideals to $M$ may not exist. In this paper, we introduce the concept of $G$-attached prime ideals to $M$ as a generalization of $G$-associated prime ideals which gives a connection between certain $G$-prime ideals and $G$-graded modules over a (not necessarily $G$-graded Noetherian...

متن کامل

ON ( $alpha, beta$ )-FUZZY Hv-IDEALS OF H_{v}-RINGS

Using the notion of “belongingness ($epsilon$)” and “quasi-coincidence (q)” of fuzzy points with fuzzy sets, we introduce the concept of an ($ alpha, beta$)- fuzzyHv-ideal of an Hv-ring, where , are any two of {$epsilon$, q,$epsilon$ $vee$ q, $epsilon$ $wedge$ q} with $ alpha$ $neq$ $epsilon$ $wedge$ q. Since the concept of ($epsilon$, $epsilon$ $vee$ q)-fuzzy Hv-ideals is an important and ...

متن کامل

GENERALIZATION OF ($epsilon $, $epsilon $ $vee$ q)−FUZZY SUBNEAR-RINGS AND IDEALS

In this paper, we introduce the notion of ($epsilon $, $epsilon $ $vee$ q_{k})− fuzzy subnear-ring which is a generalization of ($epsilon $, $epsilon $ $vee$ q)−fuzzy subnear-ring. We have given examples which are ($epsilon $, $epsilon $ $vee$ q_{k})−fuzzy ideals but they are not ($epsilon $, $epsilon $ $vee$ q)−fuzzy ideals. We have also introduced the notions of ($epsilon $, $epsilon $ $vee$ ...

متن کامل

THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES

‎We introduce a generalization of the notion of‎ depth of an ideal on a module by applying the concept of‎ local cohomology modules with respect to a pair‎ ‎of ideals‎. ‎We also introduce the concept of $(I,J)$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules‎. ‎These kind of modules are different from Cohen--Macaulay modules‎, as an example shows‎. ‎Also an art...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008